Discussion question

Let u(x,t) satisfy

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{u}{\tau} + H(u - h)$$

for $x \in \mathbf{R}$ and t > 0, where τ and h are positive constants and H is the Heaviside function.

Can you write this equation in the form of a travelling wave solution (moving from left to right)?

What are the steady states of this (travelling wave) equation?

Let s_0 be the lower steady state and s_1 be the higher steady state? Consider a travelling wave solution where u(z) approaches s_0 as $z \to -\infty$ and u(z) approaches s_1 as $z \to +\infty$. Also, assume that u and u_z are continuous. Can you write the travelling wave solution and determine the wave speed?