Discussion question

Let $u(x, t)$ satisfy

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\frac{u}{\tau}+H(u-h)
$$

for $x \in \mathbf{R}$ and $t>0$, where τ and h are positive constants and H is the Heaviside function.
Can you write this equation in the form of a travelling wave solution (moving from left to right)?

What are the steady states of this (travelling wave) equation?
Let s_{0} be the lower steady state and s_{1} be the higher steady state? Consider a travelling wave solution where $u(z)$ approaches s_{0} as $z \rightarrow-\infty$ and $u(z)$ approaches s_{1} as $z \rightarrow+\infty$. Also, assume that u and u_{z} are continuous. Can you write the travelling wave solution and detemine the wave speed?

